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ABSTRACT

Crowdfunding websites such as Kickstarter are becoming
increasingly popular, allowing project creators to raise hun-
dreds of millions of dollars every year. However, only one
out of two Kickstarter campaigns reaches its funding goal
and is successful. It is therefore of prime importance, both
for project creators and backers, to be able to know which
campaigns are likely to succeed.

We propose a method for predicting the success of Kick-
starter campaigns by using both direct information and so-
cial features. We introduce a first set of predictors that uses
the time series of money pledges to classify campaigns as
probable success or failure and a second set that uses informa-
tion gathered from tweets and Kickstarter’s projects/backers
graph.

We show that even though the predictors that are based
solely on the amount of money pledged reach a high accuracy,
combining them with predictors using social features enables
us to improve the performance significantly. In particular,
only 4 hours after the launch of a campaign, the combined
predictor reaches an accuracy of more than 76% (a relative
improvement of 4%).

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications—
Data Mining
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1. INTRODUCTION

Kickstarter! is a crowdfunding website: people with a
creative idea can open a campaign on the website to gather
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money to make it happen. When launching a campaign, the
creator sets a funding goal and a deadline. Then, people
can pledge money towards the project, and receive various
rewards in return. Rewards range from the acknowledgement
of a backer’s participation to deep involvement in a product’s
design.

The fundraising model is all or nothing: once its deadline
is reached, a campaign is considered successful if and only if
it has reached its goal. In this case, backers actually pay the
money they pledged and the project idea is realized. In the
case where the goal is not reached, the campaign has failed
and no money is exchanged.

As only 44% of campaigns reach their goal overall, it is of
high interest for creators to know early on the probability
of success of their campaign, to be able to react accordingly.
Users whose campaigns are failing to take off might want to
increase their visibility and start a social media campaign,
while those whose campaigns are highly likely to succeed
could already start working on them to deliver faster, or look
into possible extensions of their goal.

Similarly, backers could also benefit from such a prediction.
They could engage their friends and social network in backing
a campaign, if its probability of success is low shortly after
its launch. When the success probability is high, backers
could also adjust their pledge, maybe reducing it a little in
order to support another campaign, while being confident
that the campaign will still succeed. Some online tools, such
as Kicktraq® and CanHeKicklt?, provide tracking tools and
basic trend estimators, but none has yet implemented proper
success predictors.

There have been several studies published on crowdfunding
platforms: Mollick [4] provides insights about of the dynam-
ics of the success and failure of Kickstater campaigns. He
presents various statistics about the determinant features for
success and analyzes the correlation of many campaign char-
acteristics with its outcome. Wash [7] focuses on a different
platform, called Donors Choose, where people can donate
money to buy supplies for school projects. He describes
how backers tend to give larger donations when it allows a
campaign to reach its goal, and also studies the predictability
of campaigns over time.

Greenberg et al. [3] propose a success predictor for Kick-
starter campaigns based solely on their static attributes, i.e.,
attributes available at the launch of a campaign. They obtain
a prediction accuracy of 68%, which we will use as baseline

2http://www.kicktraq.com
3http://canhekick.it



when presenting the results in Section 3. However, to the
best of our knowledge, no one has studied success prediction
based on dynamic attributes of a campaign.

Of course, predicting a time series with a finite horizon
has several other applications. An obvious extension of this
framework could easily be applied to online auctions, where
the final amount to be reached can be predicted. Financial
products, such as options, could also benefit from such predic-
tors. We focus on building models for predicting the success
of crowdfunding campaigns, using Kickstarter as an example.
The techniques and results presented below however are not
restricted to this platform and should apply to any similar
setting.

In Section 2, we describe our dataset, its main charac-
teristics and the preprocessing we apply. We then present
our different predictors in Section 3, explaining the models
and showing their individual performance. We next propose
a method to combine them that significantly improves the
accuracy over individual predictors. Finally, we conclude in
Section 4.

2. DATASET DESCRIPTION

Our dataset consists of data scraped from the Kickstarter
website between September 2012 and May 2013. It consists
of 16 042 campaigns that were backed by 1309 295 users.

2.1 Collecting the Data

New campaigns are discovered on the Recently Launched®
page of Kickstarter. Once a new campaign is detected, its
main characteristics, such as its category, funding goal and
deadline, are collected and stored in a database. Then, a
crawler regularly checks each campaign’s page to record the
current amount of pledged money, as well as the number of
backers, until the project’s funding campaign reaches its end.

In parallel, we monitor® Twitter for any public tweet con-
taining the keyword kickstarter. For each tweet matching our
search, we record all its data in the database. To determine
if the tweet is related to a particular campaign, we search
for a campaign URL in its text. If any is found, the tweet is
identified in the database as a reference to the corresponding
campaign. We thus have, for each campaign, all public tweets
related to it.

Along with Twitter, Kickstarter integrates Facebook on
its website, as an other way of spreading the word about
campaigns. However, contrary to Twitter, most Facebook
posts are not public, being usually restricted to the user’s
friends. As a result, a search similar to the one described
above performed on Facebook usually yields very few results.
For this reason, we only use Twitter in our dataset.

Finally, we regularly crawl the Backers page of each cam-
paign to get the list of users who pledged money, and store
them in our database. This last step being time-consuming
to perform, it is done every couple of days, resulting in
only a few snapshots of the list of backers and therefore a
coarse resolution of the time at which each backer joined a
campaign.

“http://www.kickstarter.com/discover/
recently-launched

5We use the Twitter Streaming API to search for the keyword
kickstarter. Because few tweets match this search query
compared to the global rate of tweets, we know that we get
a large uniform fraction of the relevant tweets (usually close
to 100%) [6].

Successful Failed Total
Campaigns 7739 8303 16042
Proportion 48.24% 51.76% 100%
Users 1207777 171450 1309 295
Pledges 2030032 212195 2242227
Pledged $ 141942075 16084581 158026656
Tweets 564 329 173069 737398

Table 1: Global statistics of our dataset of Kick-
starter campaigns. We show the values for success-
ful and failed campaigns separately, as well as the
combined total. Users are unique people who have
backed at least one campaign.

Successful  Failed All
Goal (3) 9595 34693 22585
Duration (days) 30.89 33.50 32.24
Number of backers 262 25 139
Final amount  216.60%  11.40% 110.39%
Number of tweets 73 20 46
Table 2: Campaign statistics of our Kickstarter

dataset. The average values for successful and failed
campaigns are given, as well as the average over all
campaigns. The final amount is relative to the cam-
paign’s goal.

2.2 Dataset Statistics

Table 1 describes the global statistics of our dataset, for
successful and failed campaigns separately, as well as the
combined total. Table 2 shows average statistics for individ-
ual campaigns. As expected, failed campaigns have a much
higher goal on average (close to four times higher), but it is
interesting to note that they also have a longer duration®.
Moreover, we have a nearly even split between successful and
failed campaigns, with more than 48% of campaigns that
reach their funding goal. The reported” global success rate
of Kickstarter is lower, with 44% of successful campaigns
overall. This difference could be explained by the fact that
our dataset only contains recent campaigns, that benefit from
the growing popularity of crowdsourcing websites.

2.3 Dataset Preprocessing

As explained in Section 2.1, each campaign is regularly
sampled by our crawler to get its current amount of pledged
money and number of backers, until it ends. On average, a
campaign’s state is sampled every 15 minutes, resulting in
hundreds of samples at irregular time intervals.

To be able to compare campaigns with each other, we
resample each campaign’s list of states to obtain a fixed
number of Ng = 1000 states. The time of each state is
normalized with respect to the campaign’s launch date and
duration. We divide the current amount of money pledged
of each state by the goal amount to obtain a normalized
amount.

A campaign c is thus characterized by its funding goal
G(c), launch date L(c), duration D(c), final state F'(c) (equal
to 1 if the campaign succeeded, 0 otherwise) and a series of
state samples {Si(¢)}icq1,2,...,n4}- Each state S;(c) is itself

SProject creators can choose the duration of their campaign.
The default value is 30 days, with a maximum of 60 days.
"http://www.kickstarter.com/help/stats



Variable Description

G(c) Funding goal

L(c) Launch date

D(c) Duration

F(c) Final state (1 if successful, 0 otherwise)
Series of resampled states

ti(c Sample time of the " state
M;(c) Pledged money at time ¢;
Bi(c) Number of backers at time t;

Table 3: List and description of the variables describ-
ing a campaign c. The states {S;(c)} are resampled
to obtain Ns = 1000 states at regular time intervals,
as explained in Section 2.3.

composed of the amount of money pledged M;(c) (normalized
with respect to G(c)) and the number of backers B;(c).

Because each campaign is resampled to have Ng evenly-
spaced states, the time t;(c) of the i™" state S;(c) is simply
defined as

i1
! D(c), i€ {1,2,...,Ns}.

ti(c) = L(c) + No 1

Table 3 summarizes the variables describing a campaign c.

3. SUCCESS PREDICTORS

Given a campaign c and its associated variables described
above, we now introduce the algorithms we chose to predict
its success. Our predictors use partial information: to predict
the success of ¢, they only consider a prefix {S;(c)}iez of its
series of states, where Z = {1,2,...,5} and 1 < § < Ng.

Below, we will present the results for various values of S,
i.e., predictions made at different states of progress of the
funding campaigns. Each result is obtained by a predictor
that is trained independently. It would be possible to have
predictors that are able to predict the success for several (or
all) values of S, however, we chose to have separate predictors
for each value of S. Global predictors would require a variable
input size (as the length of the history depends on S), which
is more complicated to handle.

3.1 Dataset Separation

In order to train our predictors, select their parameters
and evaluate their performance, we separate the dataset into
3 parts: 70% of the campaigns are selected as the training set,
20% as the validation set and the remaining 10% as the test
set. These sets are randomly chosen and all results presented
below are averaged over 10 different assignments.

3.2 Money-Based Predictors

The first family of predictors that we define only uses
the series of amounts of money pledged {M;(c)}icz, which
we call trajectory, to predict the outcome of a campaign
c. The first predictor, described in Section 3.2.1, simply
compares the trajectory of a campaign with other known
campaigns and makes a decision based on the final state of
the k closest ones. The second, described in Section 3.2.2,
builds a probabilistic model of the evolution of trajectories
and predicts the success probability of new campaigns using
this model. The performances of these two predictors are
shown in Section 3.2.3.

3.2.1 kNN Classifier

Our first model is a k-nearest neighbors (kNN) classifier [2].
Given a new campaign c, its partial trajectory {M;(c)}icz
and a list of campaigns for which the ending state is known,
kNN first computes the distance between ¢ and each known
campaign ¢’

dz(c,d) = [> (Mi(c) — Mi(c'))>.

i€l

Then, it selects top, 7(c), the k known campaigns that are
the closest to ¢ with respect to the distance defined above,
and computes the probability of success ¢unn(c,Z) of ¢ as
the average final state of these k nearest neighbors:

ban(eD) =~ 3 F().

¢’ €topy, 7 (c)

3.2.2 Markov Chain

Our second predictor also uses the campaign trajectories
{M;}, this time to build a time-inhomogeneous Markov Chain
that characterizes their evolution over time. To do so, we first
discretize the (time, money) space into a Ng x Nps grid. This
means that we discretize each campaign trajectory {M;(c)}
to map the pledged money to a set M of Ny equally-spaced
values®, ranging from 0 to 1. For example, if Ny = 3,
M ={0,0.5,1}.

We thus obtain for each campaign c a series of discretized
amounts of money pledged {M;(c)}i1<i<ng. The Markov
model defines, for each sample i, a transition probability

Py (3) = IP’(M{H =m' | M} =m),

defining a transition matrix P(i) € [0,1]"¥*Nm v, ¢
{1,2,...,Ns — 1}. These transition matrices are not specific
to a campaign but learned globally over all campaigns in the
training set.

Success Prediction with the Markov Model.

Using the transition probabilities described above, predict-
ing the success of a campaign c is straightforward given its
discretized amount M/ (c) at time i. We compute its success
probability dmarkov (¢, 7) given its current discretized amount
of pledged money M (c) = m as

]P’(MI'\,S (c)=1]| Mj(c)=m)
> P(Myg(c) =1| Mii(c) =m') -

(z)l\/[arkov (C, Z)

P(M;;1(c) = m' | M;(c) = m)

Ng—1
[H P(Y)

=1

)

m,1

where the last step is obtained by repeatedly applying the
law of total probability.

3.2.3 Results

We select the best parameters for each predictor by doing
an exhaustive search on a wide range of values and evaluating
the corresponding performances on the validation set. The
optimal parameters found are k = 25 for kNN and Ny = 30
for Markov.

8 All values higher than 1 are mapped to 1.



Prediction accuracy (%)

70 — Baseline (|
H kNN

L Il L T
6%.0 0.2 0.4 0.6 0.8 1.0
Relative time

(a) kNN predictor

Prediction accuracy (%)

70 —— Baseline (|

- Markov [

6 L Il L T

%,0 0.2 0.4 0.6 0.8 1.0
Relative time

(b) Markov predictor

Figure 1: Prediction accuracy of the kNN and
Markov predictors, along with the static baseline of
Greenberg et al. [3]. For each relative time t € [0, 1],
a predictor was trained using {M;(c)}i<|¢ing) for all
campaigns c¢ in the training set. The value shown
is the median accuracy over 10 runs and the error
bars show the standard deviation over these runs.

Figure 1 shows the corresponding prediction accuracy over
the test set for kNN (Figure la) and Markov (Figure 1b)
predictors, along with the baseline of Greenberg et al. [3].
The baseline uses static campaign attributes, such as category,
goal, and whether it has a video description or not, to predict
the success of campaigns before their launch. The best
accuracy obtained with this approach is 68%.

The two predictors perform similarly, and very well: after
15% of the duration of a campaign, its current amount of
money pledged allows to predict its success with an accuracy
higher than 85%. As time goes by, this accuracy steadily
increases, to reach more than 97% in the very last moments.

However, kNN is very costly compared to Markov: it re-
quires to keep all training samples in memory and to compute
the distance to each of them when we want to classify a new
sample. In contrast, Markov is compact, requiring to store
only the matrices P(4), and computes the success probability
of new samples very efficiently, requiring only matrix mul-
tiplications. It is thus noticeable that such a lightweight
and elegant model performs as well as a more heavyweight
method.

3.3 Social Predictors

Contrary to the predictors presented above, which use the
amount of money pledged to predict the success of campaigns,
the social predictors use side information, obtained from
Twitter and Kickstarter’s projects/backers graph. The first,
described in Section 3.3.1, uses features extracted from the
series of tweets related to a campaign, such as the number

of retweets and the number of people who tweeted. The
second, described in Section 3.3.2, considers a graph linking
projects and backers to extract some project features such
as its number of first-time backers and the number of other
projects with common backers. Both predictors then use a
support vector machine (SVM) [1] to predict the campaigns’
success based on the extracted features. Their results are
shown in Section 3.3.3.

3.3.1 Tweets

As mentioned in Section 2, we have, for each campaign c,
the list of all public tweets {T;(c)} that mention it. As each
tweet has a timestamp, we can select the subset of tweets
Ti(c) = {Ti(c) | timestamp(T;(c)) < t} that were published
before a time ¢. Using T¢(c), we can extract the following
features:

e number of tweets, replies and retweets,
e number of users who tweeted,
e estimated number of backers®.

We then add the campaign’s goal G(c) and duration D(c)
to these features and feed them to an SVM, resulting in a
predictor @eweets(c, ).

3.3.2  Projects/Backers Graph

To extract the second set of features, we first need to
build the projects/backers graph Gi. This graph contains
all projects and backers in our training set as vertices, and
has an edge between a project p and a backer b if and only
if b backed p. The resulting graph is an undirected and
unweighted'® bipartite graph.

From (1, we can extract the co-backers graph Ga: it is
the projection of Gi1 onto the project vertices. G2 is an
undirected weighted graph, where vertices are projects and
the weight of an edge between two projects p1 and p2 is the
number of backers who have pledged money to both p; and
p2. Figure 2 shows an example of a projects/backers graph
G1 (Figure 2a) and the corresponding co-backers graph G»
(Figure 2b).

Using G1 and G2 built from our training set, we can now
consider a new campaign ¢ whose probability of success we
want to estimate at some time t. To do so, we add the project
p corresponding to ¢ to G1 and G2, using its list of backers
at time ¢t to add the necessary edges in both graph.

Then, we extract the following features of the project p:

e number of projects with co-backers (i.e., the degree of
p in G2),

e number and proportion of these projects whose cam-
paigns are successful,

e number of backers,

e number and proportion of first-time backers®!.

9We estimate the number of backers by counting the number
of tweets that contain texts such as “I just backed project
X”, which is the default message proposed by Kickstarter.
101t would be interesting to consider a weighted version of
this graph, where the weight of each edge corresponds to the
amount of money pledged. Unfortunately, we do not have
access to this information, and thus can only consider the
unweighted version.

NEirst-time backers are users that only pledged money to the
current project, and no other.
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Figure 2: Example of a project/backers graph G,
and the corresponding co-backers graph G;. G; con-
tains both projects and backers as vertices, and has
an edge between a project p and a backer b if and
only if b pledged money to p. G; is the projection of
G1 onto the project vertices, where the weight of an
edge between two projects represents their number
of common backers.

As with tweets, we then add the campaign’s goal G(c) and
duration D(c) to these features and feed them to an SVM,
resulting in a predictor ¢grapn(c, t).

3.3.3 Results

We train'? the two SVMs described above using a Gaus-
sian radial basis function (RBF) as kernel, thus having two
parameters to tune:

e (: the soft margin penalty parameter,
e v: the kernel coefficient for the RBF.

We perform an exhaustive search on a logarithmic scale
for both parameters and evaluate the performance on the
validation set to choose the best values. The best parameters
for the tweets predictor are C' = 1000 and v = 0.1, whereas
the best values for the graph predictor are C' = 100 and
v = 0.01.

Figure 3 shows the corresponding prediction accuracy over
the test set for the tweets predictor (Figure 3a) and the
graph predictor (Figure 3b), along with the static baseline
presented in Section 3.2.3. Although the performances are
clearly inferior to those of the predictors that use the series
of pledges, both social predictors quickly outperform the
baseline performance of 68% obtained by Greenberg et al. [3].
The graph predictor has a fast increase in accuracy after a
few time steps, then it decreases slightly towards the end.
This effect could be countered by choosing the optimal values
for SVM parameters independently at each time step, instead
of once globally as we do now.

3.4 Combined Predictor

Predictors using the series of pledges show a good predic-
tion accuracy, especially towards the end of the campaign.
At the beginning, however, the accuracy could still be im-
proved. Such improvement would be very useful to creators
and backers, allowing them to react accordingly to correct
the course of a campaign. A higher accuracy at later stages,
however, would not be of high interest.

12We use a Python library [5] to train the SVMs.
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Figure 3: Prediction accuracy of the tweets and
graph predictors, along with the static baseline of
Greenberg et al. [3]. For each relative time ¢ € [0,1], a
predictor was trained using features extracted from
tweets or the projects/backers graph at time ¢, for
all campaigns c in the training set. The value shown
is the median accuracy over 10 runs and the error
bars show the standard deviation over these runs.

To improve the accuracy of the predictors presented in
Sections 3.2 and 3.3, we propose to train an SVM to take the
individual predictions and combine them into a final predic-
tion. The features used by the combiner are the campaign
goal G(c), its duration D(c), along with the probabilities of
success obtained using each of the four individual predictors.

3.4.1 Results

As with the social predictors described in Section 3.3.3, we
use a RBF kernel for the SVM, thus having two parameters
C and v to tune. To do so, we run an exhaustive search on
a logarithmic scale for both of them. The best parameter
values we obtain are C' = 100 and v = 0.1. Figure 4a shows
the corresponding prediction accuracy of the combiner, along
with the static baseline presented in Section 3.2.3. Figure 4b
highlights the early-stage performance of the combined pre-
dictor. Figure 4c shows the relative improvement of the
combiner with respect to the best individual predictor, at
each time step.

Overall, the improvement of the combiner is the strongest
at the beginning of the campaign, increasing significantly the
accuracy: the first combined prediction is 4% more accurate
than any individual predictor. In other words, on average 4
hours after the launch of a campaign, the combined predictor
can assess the campaign’s probability of success with an
accuracy higher than 76%.



4. CONCLUSION

In this paper, we introduce an exclusive dataset of Kick-
starter campaigns. We study the prediction of their success,
based on two kinds of features: the time-series of money
pledged and social attributes. We show that predictors that
use the series of money pledged a reach high prediction ac-
curacy, with more than 85% of correct predictions after only
15% of the duration of a campaign. Although the social pre-
dictors reach a lower accuracy, we propose a way of combining
them with time-series predictors. The combination results in
a substantial increase in prediction accuracy in the very first
moments of a campaign (4%), precisely when the ability to
predict success has the most value. This can provide helpful
directions to both project creators and backers.

There are many future research directions we would like to
pursue. First, we should study the projects/backers graph,
to explore its structure and main characteristics. We are
especially interested in its dynamics: can we model the
“diffusion” of success across this network? Another promising
direction is the Twitter graph: how does the success of a
campaign depend on the spread of messages on Twitter?

For now, our predictors only output a probability of suc-
cess, but act as a black box: no reason for the probable
success/failure is given. While this prediction itself can al-
ready be helpful to both campaign creators and backers, as
discussed in the introduction, the next step would be to give
them the specific characteristics of the campaign that could
be improved.
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Figure 4: Prediction accuracy of the combined pre-
dictor along with the static baseline of Greenberg
et al. [3] (a), detail of the first 20% the campaign
(b) and improvement of the combiner relative to the
best individual predictor (c). For each relative time
t € [0,1], a combined predictor was trained using the
the four predictions of individual predictors at time
t, for all campaigns c in the training set. The value
shown is the median accuracy over 10 runs and the
error bars show the standard deviation over these
runs.



